Approximate $\sqrt{21}$ by using a linear approximation to $f(x) = \sqrt{10x - x^2}$ based at $x_0 = 2$. Use differentials. (note: $f(2) = 4 & f(3) = \sqrt{21}$)

Approximate $\sqrt{21}$ by using a linear approximation to $f(x) = \sqrt{10x - x^2}$ based at $x_0 = 2$. Use differentials. (note: $f(2) = 4 & f(3) = \sqrt{21}$)

5/8/25

$$\sqrt{21} = f(3) = f(2+1)$$

$$f(x+\Delta x) \approx f(x+dx)$$

$$f(x+dx) = f(x) + dy f'(x) = \frac{1}{2} \frac{1}{\sqrt{10x-x^2}} (10-2x)$$

$$= f(x) + f'(x) dx = \frac{5-x}{\sqrt{10x-x^2}}$$

$$= f(x) + f'(x)(x-x_0)$$

$$\sqrt{21} \approx f(2+dx)$$
= $f(2) + f'(2) dx$
= $4 + \frac{3}{4} (3-2)$
= $4\frac{3}{4}$